当前位置:酷唯问>百科问答>微积分的公式

微积分的公式

2024-10-04 09:42:54 编辑:zane 浏览量:603

微积分的公式

的有关信息介绍如下:

微积分包括求导公式和积分公式,其中求导公式涉及各种函数的基本导数公式,如常数、幂函数、指数函数、对数函数、三角函数等。以下是一些基本的求导公式:常数C的导数为0,即d(C)=0d(C) = 0d(C)=0。幂函数xnx^nxn的导数为nxn−1nx^{n-1}nxn−1,即d(xn)=nxn−1dxd(x^n) = nx^{n-1}dxd(xn)=nxn−1dx。指数函数exe^xex的导数为exe^xex,即d(ex)=exdxd(e^x) = e^xdxd(ex)=exdx。对数函数ln⁡x\ln xlnx的导数为1x\frac{1}{x}x1​,即d(ln⁡x)=1xdxd(\ln x) = \frac{1}{x}dxd(lnx)=x1​dx。正弦函数sin⁡x\sin xsinx的导数为cos⁡x\cos xcosx,即d(sin⁡x)=cos⁡xdxd(\sin x) = \cos xdxd(sinx)=cosxdx。余弦函数cos⁡x\cos xcosx的导数为−sin⁡x-\sin x−sinx,即d(cos⁡x)=−sin⁡xdxd(\cos x) = -\sin xdxd(cosx)=−sinxdx。正切函数tan⁡x\tan xtanx的导数为sec⁡2x\sec^2 xsec2x,即d(tan⁡x)=sec⁡2xdxd(\tan x) = \sec^2 xdxd(tanx)=sec2xdx。这些公式是微积分学习的基础,它们帮助理解和计算函数的导数和积分,从而分析函数的行为和性质。‌

微积分的公式

版权声明:文章由 酷唯问 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.kuweiw.com/answer/68044.html
热门文章